On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth

نویسندگان

  • John W. Barrett
  • Harald Garcke
  • Robert Nürnberg
چکیده

We introduce a parametric finite element approximation for the Stefan problem with the Gibbs–Thomson law and kinetic undercooling, which mimics the underlying energy structure of the problem. The proposed method is also applicable to certain quasi-stationary variants, such as the Mullins–Sekerka problem. In addition, fully anisotropic energies are easily handled. The approximation has good mesh properties, leading to a well-conditioned discretization, even in three space dimensions. Several numerical computations, including for dendritic growth and for snow crystal growth, are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs-Thomson law

We present a finite element approximation for the one-sided Stefan problem and the one-sided Mullins–Sekerka problem, respectively. The problems feature a fully anisotropic Gibbs–Thomson law, as well as kinetic undercooling. Our approximation, which couples a parametric approximation of the moving boundary with a finite element approximation of the bulk quantities, can be shown to satisfy a sta...

متن کامل

An Algorithm based on Predicting the Interface in Phase Change Materials

Phase change materials are substances that absorb and release thermal energy during the process of melting and freezing. This characteristic makes phase change material (PCM)  a favourite choice to integrate it in buildings. Stephan problem including melting and solidification in PMC materials is an practical problem in many engineering processes. The position of the moving boundary, its veloci...

متن کامل

A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis

Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...

متن کامل

One - sided Mullins - Sekerka Flow Does Not Preserve Convexity ∗ Uwe

The Mullins-Sekerka model is a nonlocal evolution model for hypersurfaces, which arises as a singular limit for the Cahn-Hilliard equation. Assuming the existence of sufficiently smooth solutions we will show that the one-sided Mullins-Sekerka flow does not preserve convexity. Introduction The Mullins-Sekerka flow is a nonlocal generalization of the mean curvature flow arising from physics [10,...

متن کامل

Three-dimensional crystal growth—I: linear analysis and self-similar evolution

In this paper, Part I of our study, we revisit the linear analysis (J. Appl. Phys. 34 (1963) 323; J. Appl. Phys. 36 (1965) 632; in: H.S. Peiser (Ed.), Crystal Growth, Pergamon, Oxford, 1967, p. 703) of the quasi-steady diffusional evolution of growing crystals in 3-D. We focus on a perturbed spherical solid crystal growing in an undercooled liquid with isotropic surface tension and interface ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 229  شماره 

صفحات  -

تاریخ انتشار 2010